Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics

نویسندگان

  • Anna Jaskiewicz
  • Andrzej S. Nowak
چکیده

We study a discounted maxmin control problem with general state space. The controller is unsure about his model in the sense that he also considers a class of approximate models as possibly true. The objective is to choose a maxmin strategy that will work under a range of different model specifications. This is done by dynamic programming techniques. Under relatively weak conditions, we show that there is a solution to the optimality equation for the maxmin control problem as well as an optimal strategy for the controller. These results are applied to the theory of optimal growth and the Hansen–Sargent robust control model in macroeconomics. We also study a class of zero-sum discounted stochastic games with unbounded payoffs and simultaneous moves and give a brief overview of recent results on stochastic games with weakly continuous transitions and the limiting average payoffs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS

In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...

متن کامل

A Weak Dynamic Programming Principle for Zero-Sum Stochastic Differential Games with Unbounded Controls

We analyze a zero-sum stochastic differential game between two competing players who can choose unbounded controls. The payoffs of the game are defined through backward stochastic differential equations. We prove that each player’s priority value satisfies a weak dynamic programming principle and thus solves the associated fully non-linear partial differential equation in the viscosity sense.

متن کامل

Nash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs

In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...

متن کامل

An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers

The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...

متن کامل

A satisfactory strategy of multiobjective two person matrix games with fuzzy payoffs

The multiobjective two person matrix game problem with fuzzy payoffs is considered in this paper. It is assumed that fuzzy payoffs are triangular fuzzy numbers. The problem is converted to several multiobjective matrix game problems with interval payoffs by using the $alpha$-cuts of fuzzy payoffs. By solving these problems some $alpha$-Pareto optimal strategies with some interval outcomes are o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dynamic Games and Applications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011